
1 The Itô & Stratonovich integrals

Recently, I’ve been reading about stochastic calculus again. Something I found quite confusing was the
existence of two formulations of the stochastic calculus; Itô and Stratonovich. When I first read about it,
it seemed like there were two mathematical treatments of the same physical process that give different
answers. As we will hopefully see, this isn’t actually a very accurate description, but it’s the impression
you can still get from a lot of textbooks and writing on the subject. SDEs require some fairly heavy duty
mathematics, and most of the work I was able to find on them wasn’t massively accessible, and tends to
focus on technical details over intuition. This article is designed to be as concise and simple a statement
as possible of the origins of the two formulations, how they are related, andwhether the difference really
matters1. I’ve tried to avoid going into the measure-theoretic treatment and more technical proofs in
favour of a high-level, intuitive overview that is still morally correct. There is a list of references if you
want to get deeper into the details of the ideas I’m going over here.

This is a summary and overview, not original work. Most derivations etc. are based on those in the
references; any mistakes are my own.

A pdf version of this page is available here if you prefer.

2 The problem

The basic problem addressed by SDEs is how to deal with noise in a physical process. That is, we have a
system described by a standard differential equation

dx

dt
= f(x, t) (1)

and we want to extend this model to deal with the presence of intrinsic noise. Note that we are not
talking about observation noise; the noise effects the evolution of the state x. Lets call the noise term
(a random variable) ξt and we can imagine an equation that looks something like this;

dX

dt
= f(X, t) + “σ(X, t)ξt” (2)

where σ(x, t) is a deterministic function measuring our sensitivity to some standard noise. The rea-
son for the quotation marks will become clear.

Of course, the deterministic equation has the solution

x(T ) = x(0) +

∫ T

t=0

f(x, t)dt (3)

and so we expect it’s stochastic counterpart will have solution

X(T ) = X(0) +

∫ T

t=0

f(X, t)dt+ “

∫ T

t=0

σ(X, t)ξtdt” (4)

The question, then, is how we assign meaning to the terms in quotation marks. We might want to
start by associating our noise ξt to some random process. Wemay expect it has the following properties,
approximately like that of normally distributed noise for discrete observations;

1. The noise is zero mean: E[ξt] = 0 for all t.

2. The noise is uncorrelated: for any t, t′ such that t 6= t′, E[ξtξt′ ] = 0

3. The noise is stationary: for any set of times t1, t2, ...tn, the joint distribution P (ξt1 , ξt2 ...) is the
same as P (ξt+t1 , ξt+t2 ...) for any t.

1Spoiler; you should probably understand it, but not lose sleep over it
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Figure 1: Sampled paths of Brownian motion starting at 0.

The reason we want the first condition is pretty obvious; if the noise had a non zero mean, then it
would produce a drift over time, and we would rather treat the drift as part of the deterministic func-
tion f . Similarly, if the noise was non-stationary, we could absorb that into the function σ; we want
a ‘standard’ noise term. These conditions describe white noise, a random signal with no characteristic
frequency.

This seems reasonable enough, and fairly well motivated by the noise one encounters in real systems
(for example, TV static). However, continuous time white noise is actually quite a bizarre and poorly
behaved mathematical object. It turns out to be impossible to construct a white noise process ξt which
also has continuous paths, which seems like an important feature for defining well behaved differential
equations. Indeed, a true white noise signal would have a completely flat Fourier spectrum,which would
imply that it had infinite energy 2. So we cannot give the equation a sensible meaning by setting ξt to a
random process directly.

We need a different way, then, to interpret the noise term, if we are going to end up with a sensible
mathematical model for noisy dynamics. One way to arrive at a more meaningful result is to split T into
N discrete intervals and consider the discrete equation

XT = X0 +

N∑
t=1

f(t,Xt)∆t+

N∑
t=1

σ(t,Xt)∆Wt (5)

where ∆Wt = Wt+1 − Wt are the increments of some random process Wt. Now, our assumptions
imply that we would like the process to have stationary, independent increments with zero mean. It
turns out there is only one such process with continuous paths: Brownian motion, also known as the
Wiener process, which is a continuous time generalisation of a random walk.

The Wiener process can be thought of as the integral of white noise. It is differentiable nowhere;
its derivative would be the white noise process discussed above. Brownian motion Bt is an example of
a Gaussian process; for any finite collection of times t1, t2, ...tn, the joint distribution of Bt1 , Bt2 ... is a
multivariate Gaussian, with mean zero (for Brownian motion starting at zero) and a covariance matrix
Σ whose entries are given by

2For a signal x(t), the energy of the signal is proportional to
∫∞
−∞ |x(t)|2dt, which is proportional to

∫∞
−∞ |x̂(f)|2df where x̂ is

the Fourier transform of x. White noise would have a flat frequency spectrum, i.e x̂(f) = const.. It’s easy to see this leads to the
energy being infinite.
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Σij = E[BtiBtj ] = min(ti, tj) (6)

For brevity here, I’m going to mostly take the above as a sensible definition without going much into
physical motivations, but Brownian motion has many physical applications, with the original one being
the motion of a particle suspended in a fluid. The basic physical intuition behind the idea that Bt is an
integral of white noise is that in an interval ∆t, our particle gets hit by a large number of uncorrelated
kicks in random directions with bounded variance, which will lead to a Gaussian change of momentum
in that interval.

It follows directly from the above definition that Brownian motion has independent increments; if
t1 < t2 < t3..., then

E[(Bti+1 −Bti)(Btj+1 −Btj )] = min(ti+1, tj+1)−min(ti+1, tj)−min(ti, tj+1) +min(ti, tj) (7)

= ti+1 − ti+1 − ti + ti when ti < tj (8)

= 0 (9)

and the variance of increments is

E[(Bt −Bt′)
2] = E[B2

t ] + E[B2
t′ ]− 2E[BtBt′ ] (10)

= t+ t′ − 2min(t, t′) (11)

= |t− t′| (12)

Brownian motion is the only process with continuous paths that satisfies our list of criteria, so we
will use as our discrete model

Xk+1 −Xk = f(t,Xt)∆t+ σ(t,Xt)∆Bt (13)

XT = X0 +

N∑
t=1

f(t,Xt)∆t+

N∑
t=1

σ(t,Xt)∆Bt (14)

in integral or derivative form. We can now try to go back to continuous time by taking the limit as
we divide the interval into smaller and smaller pieces (N → ∞).

3 The stochastic integral

Let’s quickly recall how the standard (Riemann) integral can be defined. We have some function f(t) we
want to integrate over the range 0, T . First, we partition the interval into t0, t1, t2, t3, ..., and consider∫ T

0

f(t)dt = lim
N→∞

N−1∑
k=0

f(t̂k)∆tk, ∆tk = tk+1 − tk (15)

where the width of each interval is T/N , and for each interval∆tk, we choose a value t̂k ∈ [tk, tk+1] at
which we evaluate the function. Intuitively: we replace the function with a series of rectangles, whose
heights are f(t̂k) and whose widths are ∆tk, and then take the limit of the sum of the area of the rect-
angles as we make this approximation tighter and tighter.

For ordinary, smooth functions, of course, this integral converges to the same value nomatter where
we choose our rectangle heights t̂k in the interval. However, Brownian motion is less well behaved.

To be slightly more precise, the rectangular construction can be thought of as approximating f as a
‘simple function’, where simple functions are defined in the following way. Let 1 be the characteristic
function of a setA; that is 1A(x) = 1 if x ∈ A and 0 otherwise. Then, the rectangular construction is the
same as a approximating f with a function of the form

f(t) ' φ(t) =
∑
k

f̂k1[tk,tk+1)(t) (16)
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Figure 2: TheRiemann integral construction; divide the functionup into rectangles. Here, I’ve evaluated
the function at the left edge of each rectangle.

where the f̂ are constants, chosen at some point in the interval as above. For these functions, the
area under the curve can be computed very easily as a sum of rectangles. As we take the limit of the
intervals becoming infinitesimally wide, the approximation to the function becomes exact and the sum
converges to the value of the integral 3

The obvious thing to do next is to try to extend the same idea to random processes. That is, we can
consider functions of the form

φ(t) =
∑
k

êk1[tk,tk+1)(t) (17)

for which the integral can be defined in terms of discrete intervals in a straightforward way as

∫ T

0

φ(t)dBt =
∑
k

êk∆Bk (18)

Note that here, the coefficients êk are not constants, as in the construction for deterministic func-
tions, but random variables, as we are allowed to integrate functions σ which depend on Xt, which is
also a random variable.4 It doesn’t have the same geometrically intuitive nature as the Riemann inte-
gral, but there is an analogy here; instead of a finite sum of simple functions which are rectangles, we
are now dealing with a finite sum of ’simple random variables’ multiplied by increments of a Brownian
walk, which are Gaussian.

And we can try to proceed in the same way; having defined a class of functions whose integral is
obvious, analogous to the rectangles of the Riemann construction, we can then consider approximating

3At least for smooth, well-behaved functions. There exist functions for which this simple picture is actually problematic; for
example, consider the function 1Q, the indicator function of the rational numbers, which cannot be approximated well as a sum
of rectangles. As mentioned, I am trying to avoid these kinds of details here.

4Again, I’m assuming here that random processes can be approximated by simple functions in a way that will converge to the
true process. This is a non-trivial claim, and in a formal treatment the class of functions for which this is true would have to be
defined rigorously. For example, the stochastic integral of the processXt = B2t cannot be defined in a sensible way, because this
would mean that the current value of the integral depends on the value of the noise in the future. The full details are beyond the
scope of this post, and can be found in the references, particularly Øksendal, chapter 3
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Figure 3: The convergence of the Riemann integral of
∫ 1

0
3x2 withN , the number of subdivisions of the

interval, for various choices of evaluation point τ . For the Riemann integral, this choice doesn’t matter;
all values of τ converge quickly to the true value of the integral. This is not always the case for stochastic
integrals.

the functions we wish to integrate as these simple functions, then letting the size of the interval tend
to zero.

However, we will run into difficulties immediately. Unlike for continuous functions, whose sum
converges wherever we choose the midpoints f̂k, we will see that we can get very different results de-
pending on where we evaluate the integrated function in the random case. Let the evaluation point be
τk ∈ [tk, tk+1), and consider integratingBt in this way, so êk = Bτk . Then, if we consider the expectation,
we have

E

[∫ T

0

BtdBt

]
= E

[∑
k

Bτk∆Bk

]
(19)

=
∑
k

E
[
Bτk(Btk+1

−Bk)
]

(20)

=
∑
k

min(tk+1, τk)−min(tk, τk) (21)

=
∑
k

(τk − tk) (22)

but this can be anything between 0 (for τk = tk) and T (for τk = tk+1)! So without a choice of τ , we are
still unable to define the integral of a fairly simple stochastic process without ambiguity. In the above,
we didn’t bother writing that we were considering a limit, but it clearly doesn’t affect the argument, as
the different answers have no dependence on N .

The fix is basically to justmake a choice, and simply define the integral to be the limit as evaluated for
a choice of τ . The Itô rule says to evaluate the integrand at the left endpoint, corresponding to τk = tk,
while the Stratonovich rule says to evaluate at the midpoint, corresponding to τk = 1

2 (tk+1 + tk). We
could, in principle, choose τk = λtk + (1− λ)tk+1 for any value λ ∈ [0, 1], but these two choices turn out
to be the most natural and convenient ones.

4 Itô or Stratonovich?

The obvious question is which interpretation is the right one?. After all, we just saw that the equations
give different answers. If we let
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∫ T

0

b(x, t)dBt (23)

denote the Itô integral and

∫ T

0

b(x, t) ◦ dBt (24)

denote Stratonovich’s, then we have two options to interpret our original prototype of a stochastic
differential equation. Itô says

X(T ) = X(0) +

∫ T

t=0

f(X, t)dt+

∫ T

t=0

σ(X, t)dBt (25)

and Stratonovich says

X(T ) = X(0) +

∫ T

t=0

f(X, t)dt+

∫ T

t=0

σ(X, t) ◦ dBt (26)

and these describe different processes, aswe have just seen. Surely onemust be“better?”. Lets briefly
look at the properties of the two integrals before we return to this question.

4.1 Itô

The biggest advantage of Itô’s formulation is that the evaluations of the function are totally uncorrelated
with the increment, by construction. That is to say, that because we evaluate the function f(x,Bt, t) at
the left point of the midpoint, our limiting sum is

∫
f(x,Bt, t)dBt = lim

N→∞

∑
k

f(xtk , Btk , tk)(Btk+1
−Btk) (27)

But because the increment (Btk+1
−Btk) is uncorrelatedwithBtk , it’s also uncorrelatedwith any function

of Btk , and so this always has mean zero.
This leads to the nice property that an Itô integral∫ T

S

f(x, t)dBt (28)

always has mean zero, and is a martingale. A stochastic process Mt is a martingale if its mean is
bounded, and the conditional expectation given access to it’s history up to time t′ is equal to the value
at that time; that is

E[|Mt|] < ∞ (29)

E[Mt|{Ms, s ≤ t′}] = Mt′ , for all t′ ≤ t (30)

In less formal language, thismeans that the“best guess” for the future value of amartingale is always
the most recent observed value; knowingMt′ is just as good as knowing the entire history ofMt up to t′.
The origins of the term“martingale” are historical; they have been extensively mathematically analysed
in the context of gambling5. If Wt is your wealth at the tth round of a fair game, like betting on a coin
flip, thenWt is a martingale; on average you end up with the same amount of money you started with.

It is slightly difficult to give a non-technical overview, but this property turns out to be very con-
venient mathematically, due to some nice theoretical properties of martingales. For instance, one can

5According to Wikipedia,martingale originally referred to an entertainingly poorly conceived class of gambling strategies, and
later the name became attached to the games these strategies were designed for, with an important result in martingale theory
being the impossibility of a winning strategy in a fair game of chance, given only bounded wealth and time.
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make use of the martingale property when computing the conditional expectation of an Itô process. In
general, it is easier to analyse and prove theorems about the Itô integral for this reason.

The choice of the function evaluation “before” the observation of noise also seems natural if you
think of a stochastic process as being the limit of a discrete one as the time-per-round becomes in-
finitesimal, as we used above to derive an SDE. Obviously, in a discrete game, you have to make your
decision before you observe new information, and the Itô integral makes the current function value
independent of the current noise increment. 6

On the other hand, the Itô integral leads to a modification of the chain rule of calculus for changing
variables. If we have an Itô process

dXt = f(Xt, t)dt+ σ(Xt, t)dBt (31)

and we want the equation of a new random process Yt, where Yt = g(t,Xt), and g is a twice differen-
tiable function, the Itô SDE for Yt is given by

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)σ(Xt, t)

2dt (32)

the famous Itô’s lemma. Here, we have an additional second order term in the noise added to the
standard chain rule. I won’t go through the derivation here, but I will provide a brief, hand-wavey ex-
planation. From the properties of Brownian motion, we can see that

E[∆B2
k] = ∆tk (33)

which implies that, as we take the limit

(dBt)
2 = dt (34)

The infinitesimal of dYt is given by it’s Taylor expansion;

dYt =
∂g

∂t
dt+

∂g

∂x
dXt +

1

2

∂g2

∂x2
(dXt)

2 + ... (35)

(36)

where the second order term inXt is relevant because

(dXt)
2 = f2(dt)2 + 2fσdtdBt + σ2(dBt)

2 (37)

In the infinitesimal limit, dt2 and dtdBt become negligible faster than dt and dBt, but as we saw,
(dBt)

2 is of the same order as dt and tends to it in probability. Since the Itô choice means that ∆Bk is
independent of fk and σk, this leads to the rule dt2 = dtdBt = 0, dB2

t = dt, from which we get the last
term in Itô’s lemma.

4.2 Stratonovich

Itô’s lemma is a neat piece of mathematics, but it’s also quite awkward to work with. Stratonovich’s
choice avoids this; his choice of evaluation point preserves the standard chain rule, but in the process
necessarily gives up the useful martingale properties of the Itô integral.

I mentioned that Itô has a certain intuitive appeal if you think of a stochastic equation as the limit
of a discrete time process. Similarly, the Stratonovich integral has a nice physical motivation. Recall,

6This occasionally leads to the (slightly misleading) claim that the Itô integral “does not look into the future”. This is of course
true, but it somewhat implies that the Stratonovich formulation does, which is not the case. Both formulations lead to SDEs which
depend only on the past. The non-anticipatory choice in Itôs formulation does mean that the noise term is uncorrelated with the
present value of f , which is what gives the Itô process it’s nice probabilistic properties. But one does not need the gift of prophecy
to use Stratonovich’s formulation, as can be seen later from the fact that Stratonovich processes have equivalent Itô formulations
and vice versa, which would be impossible if one class of equations was able to “look into the future” and the other was not.
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Figure 4: The first three figures are draws from a Gaussian process with a finite correlation length,
with this length being decreased gradually. These have smooth, continuous paths. The bottom panel
shows a draw from true white noise. As the length scale decreases, the finite correlation noise becomes
increasingly similar to white noise, so we can think of white noise as an idealised limit of a series of
smooth, continuous processes with increasingly small correlation time.

originally, one of the desired properties of white noise ξ that we wanted was total independence w.r.t
time

E[ξtξt′ ] = 0, t 6= t (38)

which prevents you from constructing a noise process with continuous paths, and leads to the ab-
surd requirement that we have a signal with a flat power spectrum for all frequencies. The white noise
condition above says that for any ε, ξt and ξt+ε are totally statistically independent. A more realistic
version of this condition is that the characteristic time scale of correlation is finite, but very small, at
least compared to the time scale on which we aremeasuring the system. For example, consider the noise
induced in a small object suspended in a fluid, the canonical example of a physical random walk. It’s
obvious that while the kicks from particle collisions happen on amuch smaller timescale that the macro
motion of the particle, they will have some finite, though tiny, correlation time since the particles in the
fluid move at finite speed.

If we allow our noise process to have some finite length-scale τ , then we can draw a process with
continuous paths. To be concrete, consider the squared-exponential process, a Gaussian process with
covariance

Σij = exp

[
−|ti − tj |2

τ2

]
(39)

Clearly, as τ → 0, this approaches the idealised white noise process ξ, as can be seen in the figure
above. We can therefore consider having some processBτ

t , such that asBτ
t → Bt as τ → 0, and consider

what the process

dXτ
t

dt
= f + σ

dBτ
t

dt
(40)
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converges towards. Making this statement more rigorous requires going back to measure theory,
and considering the equation that is conditioned on an element of the event spaceΩ, that isBτ

t (ω). This
equation is then a standard ODE for all τ , since Bτ

t (ω) are deterministic, continous functions, and one
can show that theXτ

t (ω) converges toXt(ω) for almost all ω. More intuitively, we can imagine that the
unknown ODE input Bτ

t is picked ahead of time, meaning that the system is just a normal ODE with an
unobservable state component. These are randomODE’s in the sense that they have an unknown input,
but their mathematical behaviour is the same as standard ODEs. It turns out that the solution to these
equations converges to the Stratonovich equation

dXt = fdt+ σ ◦ dBt (41)

in the limit of white noise (τ → 0). So the physical interpretation of the Stratonovich process is as
the limit of a continous time process with coloured noise. Intuitively, this is why Stratonovich preserves
the normal chain rule; because we define it as the limit of a series of ODEs, which obviously obey the
standard chain rule. However, Stratonovich integrals are not Martingales - with the evaluation of f at
the midpoint of the interval, f and∆Bt are no longer independent by construction.

5 Does it matter?

I’ve tried to give an idea of the “philosophical” justification for the approaches taken by the two formu-
lations. To an extent, the popularity of the two reflects this; the Itô integral is more popular in math-
ematics and finance, where the interpretation as the limit of a discrete game is somewhat appealing,
and (more importantly) the martingale property is convenient. Stratonovich’s rule is more popular in
physics, where the limit of smooth noise argument is more compelling. However, it’s easy to exaggerate
the importance of this. In particular, the two are mathematically equivalent in the following sense; any
Stratonovich process

dXt = f(Xt, t)dt+ σ(Xt, t) ◦ dBt (42)

has an equivalent Itô process with identical solutions, which is given by

dXt = f(Xt, t)dt+ σ(Xt, t)dBt +
1

2

∂σ

∂x
(Xt, t)σ(Xt, t)dt (43)

This formula holds in both directions. So if we already have a well defined SDE, either in the Itô or
Stratonovich sense, then we can convert between the two conventions arbitrarily, depending on which
properties we feel are more convenient for the problem at hand. Notice that the conversion formula
basically comes down to a modification of the drift (dt) term.

The only time ’interpretation’ comes into it is if we start with the “pre equation”model

dX

dt
= f(X, t)dt+ σ(X, t)ξt (44)

where we just know our system should be “noisy”. As we have seen, this equation as written has no
real rigorous meaning. If we know f and σ, however, we could reasonably choose to interpret it either
as the Itô SDE

dXt = f(Xt, t)dt + σ(Xt, t)dBt (45)

or as

dXt = f(Xt, t)dt + σ(Xt, t) ◦ dBt (46)

which are not equivalent, in general, as we have seen.

9



The only time this is really relevant, though, is if we have some prior knowledge of the “noise-free”
f , and we would like the f of the stochastic equation to match, in which case choosing the “correct”
interpretation is important. An example would be in electronic engineering, say, where we may have a
strong understanding of the noise-free case, and where the Stratonovich interpretation of the noise is
much more physically compelling. However, an Itô formulation of the noise process is still possible. In
this case, though, the deterministic component of the SDEmay notmatch the f wewould have expected
from the noise free analysis (because of the modification to the drift term in the conversion formula
above).

However, the situation where we somehow “know” f and σ a priori, and have to make a deep philo-
sophical decision as to whether interpreting the noise as the limit of a discrete time process or as the
limit of coloured noise, is slightly unrealistic, occurring mostly in SDE textbooks. In reality, we can
choose either formulation, then we will fit it to data; in other words, we have Xt as given, not f, σ, and
we need to choose the f, σ that will give us the answers we observe. Our choice of formulation will
not affect the behaviour of the system, but it may change the interpretation of the drift and diffusion
coefficients in our model. To make this concrete, let’s go through an example.

6 An example - a noisy population growth equation

An illustrative example is the simplest form of the noisy population growth equation

dN

dt
= N(r + γξt) (47)

where r is the (constant) average growth rate for a population of size N, γ is a constant, and ξt is
white noise as before. This can be generalised to let r, γ depend on t or N , but the simplest case will be
sufficient for us here. In standard form, the corresponding SDE is

dNt = Ntrdt+ γNtdWt where dWt = dBt or ◦ dBt (48)

depending on whether we choose the Itô or Stratonovich interpretation of the noise (remember that
without a specification, the equation involving ξt doesn’t really have any meaning).

For now, choose the Itô convention. In this case we have that,

∫ t

0

dNt

N
= rt+ γBt (49)

if we set B0 = 0. Now, we can evaluate this by applying Itô’s lemma to g(x, t) = ln(x), which gives

d(lnNt) =
dNt

Nt
− 1

2
γ2dt (50)

and so

ln
Nt

N0
= (r − 1

2
γ2)t+ γBt (51)

Nt = N0 exp[(r −
1

2
γ2)t+ γBt] (52)

If we let N̄t be the solution to the Stratonovich interpretation, we would have obtained

N̄t = N̄0 exp[rt+ γBt] (53)

as the dt term in the log expansion comes from Itôs lemma, which does not apply in this case. Note
these are both processes of the form

Xt = X0 exp(αt+ βBt) (54)
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and the difference between the two interpretations comes down to a modification of α.
This can then be used to give some predictions about the long term behaviour of the solution. We

can use the law of the iterated logarithm, which states that for a random walk,

lim sup
t→∞

Bt√
2t log log t

= 1 (55)

almost surely7. This implies that Bt will be bounded by
√
2t log log t as t → ∞. Since this is domi-

nated by t for large t, we have that the t term in the exponential will dominate the long term behaviour
unless α = 0. This implies that (almost surely)

α > 0 ⇒ Nt → ∞ as t → ∞
α < 0 ⇒ Nt → 0 as t → ∞

This seems to be a dramatic illustration of the differences between the approaches; Itô says that
Nt → 0 almost surely (i.e the population will eventually become extinct with certainty) if r − 1

2γ
2 < 0.

Stratonovich, though, predicts the same as the non-noisy case; the population will tend to extinction
only if r < 0.

Let’s look at another difference. What is E[Nt]? Again, let’s do the Itô process; we have

E[Nt] = N0 exp((r −
1

2
γ2)t)E[exp(γBt)] (56)

By using Itô’s formula on Yt = exp(γBt), we get

dYt = γ exp(γBt)dBt +
1

2
γ2 exp(γBt)dt (57)

⇒ YT = Y0 + γ

∫ T

0

YtdBt +
1

2
γ2

∫ T

0

Ytdt (58)

Using that Itô integrals have mean 0, we have

E[YT ] = E[Y0] +
1

2
E[γ2

∫ T

0

Ytdt] (59)

⇒ d

dt
E[Yt] =

1

2
γ2E[Yt] (60)

⇒ E[Yt] = e
1
2γ

2t (61)

since Y0 = 1. This implies thatE[Nt] = N0e
rt, the same as the deterministic case, despite the slightly

odd look of the Itô solution. For the Stratonovich formulation, one instead obtains

E[N̄t] = exp(r +
1

2
γ2)t (62)

which is different from the deterministic case. On the other hand, if we look at the expectation of logNt,
we find that

E[logNt] = logN0 + (r − 1

2
γ2)t (63)

E[log N̄t] = log N̄0 + rt (64)

which makes Itô different from the deterministic case.
So which one is right? It’s not at all clear whether population growth is ‘really’ the limit of a discrete

time process or the limit of a coloured noise process, so there doesn’t seem to be a strong reason to

7‘Almost surely’ means ‘with probability 1’
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prefer one interpretation or the other. And the two interpretations give very different predictions, even
up to whether a species will go extinct? Isn’t this a huge problem?

Actually, the confusion8 here comes, as I mentioned, from a hidden assumption. We have assumed
that we have been given r and γ from on high, and asked to choose which kind of noise to apply. This
is not realistic; in reality, we would infer the r and γ from some empirical data. The system is fixed, and
the choice of a formulation will lead to a different interpretation of r and γ, rather than the other way
around!

Indeed, I have been slightly disingenuous here in using the same letters r and γ for both processes
Nt and N̄t. Let’s call the Itô coefficients ri, γi and the Stratonovich rs, γs. Now, what do the parameters
mean? It’s clear r should be some kind of average instantaneous growth rate. If we let the population at
a time be x, and consider the instantaneous average conditioned onNt = x, we have that the arithmetic
average growth rate is

Ra(x) = lim
∆t→0

E[
Nt+∆t −Nt

∆tNt
| Nt = x] (65)

=
1

x
lim
∆t→0

E[Nt+∆t | Nt = x]− x

∆t
(66)

Now, again treating the Itô solution, we have that, using the solution we worked out earlier

Nt+∆t | (Nt = x) = x exp[(ri −
1

2
γ2
i )∆t+ γi(Bt+∆t −Bt)] (67)

Because Bt+∆t −Bt follows a Gaussian distribution with variance∆t, we see that this follows a log-
normal distribution, with parameters µ = logx + (ri − 1

2γ
2
i )∆t and σ2 = γ2

i ∆t. Then we can use the
standard formula for the mean of a log normal distribution

E[Nt+∆t | Nt = x] = exp(µ+
σ2

2
) (68)

= x exp(ri∆t) (69)

So we can see that the arithmetic average growth rate is equal to the Itô growth parameter;

Ra(x) =
1

x
lim
∆t→0

x exp(ri∆t)− x

∆t
(70)

=
1

x
lim
∆t→0

x(1 + ri∆t+O(∆t2))− x

∆t
(71)

= ri, (72)

If we perform a similar calculation for the Stratonovich solution, we obtain that rs = Ra − 1
2γ

2
s . Note

that we can also get this simply by using the Itô/Stratonovich conversion formula above.
One can also show that if you consider the geometric average Rg instead of the arithmetic, which

is arguably more natural for geometric growth, then you find that the Stratonovich rate rs = Rg, and
ri = Rg +

1
2γ

2
i .

The key point here is that the solutions give identical predictions when they are phrased in terms
of the actual measurable quantities in the system, the average growth rate for some specified average.
Recall that we had above that Itô predicted extinction if ri − 1

2γ
2
i < 0, while Stratonovich predicted it

for rs < 0. We see, then, that in fact Itô and Stratonovich completely agree; the population will tend to
extinction if the geometric average growth rate is negative, or if the arithmetic average is smaller than
half the square of the variance parameter γ (which is the same in both formulations, as can be seen by
comparing the Bt term in the solutions).

8The confused are in good company; even Øksendal’s book, something of a standard text for SDEs, is a little misleading here,
in my opinion. The overview of this example is taken from chapter 5 in his book. He writes ’The two solutions have fundamentally
different properties and it is an interesting question which one gives the best description of the situation’.
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7 Conclusion

We have given an overview of the difference between the two formulations of the stochastic integral.
We have seen that the differences between them, though they appear dramatic at first glance, are in fact
largely semantic.

Both the Itô and Stratonovich formalisms have a ‘physical’ motivation; Itô as the limit of a discrete
random process as the length of the discrete intervals tends towards zero, and Stratonovich as the limit
of a process with coloured noise as the frequency spectrum tends to being uniform. It should be clear
that these are both idealisations. While this is sometimes relevant if one of these limit processes is
clearly more appropriate than the other, this is of secondary importance compared to which choice has
more convenient mathematical properties for the task at hand. Often, neither of the limit processes is
particularly compelling, as in the population growth example. As we have seen, while having to choose
can appear to have a dramatic effect on the solutions, the difference between the solutions is not really
a ‘physical’ difference, but only changes how we interpret the coefficients in our models.

The difference between the two is often framed as ‘given f andσ,weneed to choose Itô or Stratonovich,
and we will get a differentXt depending on our choice’. A more accurate way to think about it would be
that we haveXt, the true behaviour of our system, and our choice of formalism determines how we will
choose f and σ. Paradoxical differences can be eliminated under sufficiently careful treatment. Wemust
remember that the tail does not wag the dog; we need tomake a choice between the Itô and Stratonovich
in order to make our mathematics work; either is fine so long as we are consistent, and the system we
are modelling is not likely to be affected by our choice of convention.
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